
CS106A
Winter 2011-2012

Handout #19
February 8, 2011

Exam Strategies

 Based on a handout by Julie Zelenski and Chris Piech

The exams in CS106A course can be challenging and even a bit intimidating. Hopefully you have been
keeping up in lecture and doing well on the assignments, but may be unsure of how to make sure your
skills will translate well to the exam setting. The practice midterm gives an idea of what to expect and
this handout gives some sage advice gathered from our current and past staff members. We hope you
will find our tips useful .

The Rationale Behind Pencil and Paper Exams

Students often suggest that exams should be done more like assignments: using a computer (i.e.,
Eclipse), having code completion and searchable documentation, being able to run, test, and debug, etc.
The logistics of a computerized exam add serious challenges in terms of fairness and security, but we
did try this experimentally and it didn’t work they way we’d hoped. In a time-restricted situation,
immediate feedback from the compiler can be more of an impediment than an advantage. Imagine this:
you read the first problem, have a good idea how to solve it, write your solution, and trace its operation
and feel good. In a paper exam, you then move on to the next problem. In a computerized exam, you
compile and test it. Suppose it exhibits a bug—even though it may only be a minor issue, you can see
your answer is wrong—so you hunker down and rework and retest until perfect… even if it takes the
whole exam. Bad deal – since you never got to the other problems on the exam! Given the limited
time available, we want you to write your best answer and move on. Paper seems to be the means to
encourage exactly that.

We know that writing on paper is not the same as working with a compiler, and we account for that in
how we design and grade the exam. We are assessing your ability to think logically and use
appropriate problem-solving techniques. We expect you to express yourself in reasonably correct Java,
but we will be quite lenient with errors that are syntactic rather than conceptual.

How to Prepare For the Exam

“Open book” doesn’t mean “don’t study”. The exam is open-book/open-notes and you can bring
along the textbook, Karel reader, your notes from lecture, course handouts, and printouts of all your
assignments. We don’t expect you to memorize minute details and the exam will not focus on them.
However, this doesn’t mean you shouldn’t prepare. There certainly isn’t enough time during the exam
to learn the material. To do well, you must be experienced at working problems efficiently and
accurately without needing to repeatedly refer to your resources.

Practice, practice, practice. A good way to study for the programming problems is to take a problem
(lecture or section example, chapter exercise, sample exam problem) and write out your solution under
test-like conditions (e.g., on a blank sheet of paper using a pencil with a short amount of time). This is
much more valuable than a passive review of the problem and its solution where it is all too easy to
conclude “ah yes, I would have done that” only to find yourself adrift during the real exam when there
is no provided solution to guide you!

- 1 -

Get your questions answered. If there is a concept you’re a bit fuzzy on, or you’d like to check your
answer to a chapter exercise, or you wonder why a solution is written a particular way, get those
questions answered before the exam. Swing by the LaIR, come to office hours, or send an email and
we’re happy to help.

How to take the exam

Scan the entire exam first. Quickly peruse all questions before starting on any one. This allows you to
“multitask”—as you are writing the more mundane parts of one answer, your mind can be
brainstorming strategies or ideas for another problem in the background. You can also sketch out how
to allocate your time between questions in the first pass.

Spend your time wisely. There are only a handful of questions, and each is worth a significant amount.
Don’t get stuck on any particular problem. There is much opportunity for partial credit, so it’s better to
make good efforts on all problems than to perfect an answer to one leaving others untouched.

Consider the point value of each question. The exam has one point per minute, so use the point
values as a rough sketch of how much time you should spend per question.

Leverage the materials you bring with you. If you know of a method/class in the reader, a handout,
lecture sides, or lecture code that would help, you can simply cite the source and use it. You do not
need to rewrite it. If you have a function you wrote for an assignment that you would like to use, you
can copy it from your assignment printouts (hence, why we suggest you bring them).

Style and decomposition are secondary to correctness. Unlike the assignments where we hold you to
high standards in all areas, for an exam, the correctness of the answers that dominates the grading.
Decomposition and style are thus somewhat de-emphasized. However, good design may make it easier
for you to get the functionality correct and require less code, which takes less time and has fewer
opportunities for error. Comments are never required unless specifically indicated by a problem.
When a solution is incorrect, commenting may help us determine what you were trying to do and
award partial credit.

Answer in pseudo-code, but only if you must. If the syntax of Java is somehow in your way, you can
answer in pseudo-code for partial credit. There is a wide variation in the scoring for pseudo-code.
Some pseudo-code is vague and content-less and does little more than restate the problem description
and thus is worth next to nothing. The more details it provides, the better. We typically award at most
one third of the points for clear pseudo-code precisely describing a correct algorithm. But truthfully,
very good pseudo-code contains so much information that it typically would have been easier and more
concise to just write in Java in the first place.

Pay attention to specific instructions. A problem statement may include detailed constraints and hints
such as “Karel must end up facing East.” You may want to underline or highlight these instructions to
be sure you don’t overlook them. These constraints are not intended to make things difficult; typically
we are trying to guide you in the direction of a straightforward and simple solution. If you disregard
these instructions, you are likely to lose points, either for not meeting the problem specification and/or
for errors introduced when attempting a convoluted alternative.

- 2 -

Syntax is not that important if it is clear what you mean. We won’t trouble you about most small
syntax errors (forgetting semi-colons, misspellings, etc.) as long as your intentions are clear. Having
said that, beware that if your syntax errors cause ambiguity, we might not get the correct meaning. For
example, if we see a for statement followed by two lines, where both lines are vaguely indented or a
third line has been added in after the fact, we may be confused. If there are braces around all the lines,
it will be clear you intended both to be a part of the loop body, but without the braces, we can’t be sure
and it may make your answer incorrect.

Write in pencil. CS exams done in pen are often messy and difficult to grade. Your first draft may
have “typos” (e.g., missing arguments in method call, statements out of order), and in pencil, you can
easily erase to make the necessary corrections. In pen, it is hard to make such changes and still keep
your intentions clear.

Cross-out abandoned attempts rather than erasing them. As it usually turns out on a CS exam, you
will have false starts on a problem—you try one strategy and hit a dead end. You try something else
and then realize you actually were closer to the right solution the first time. If you haven’t erased your
first attempt, you can always go back to it. Once you work out a better answer, cross out your earlier
attempt. When you cross out work, please direct us to where you have written the solution you want
graded instead. If you forget to cross out your bad attempt and hence appear to have two answers, we
will grade whichever is physically closer to the problem statement.

Save a little time for checking your work. Before handing in your exam, reserve a few minutes to go
back over your work. Check for missing initialization/return statements, correct parameters passed to
functions, etc. We try not to deduct points for minor things if it is obvious what you meant, but
sometimes it is difficult to decipher your true intention. You might save yourself a few lost points by
tidying up the details at the end.

Good luck on the exam!

- 3 -

